

Demystifying Risk Assessment

NASA - Marshall Space Flight Center
Office of Strategic Analysis & Communication
Performance Analysis & Integration Office
Project Planning & Analysis Team

Jimmy Black (NASA, MSFC CS40)

Greg Smith (Smith & Associates, LLC)

Background

- MSFC is one of 10 NASA field centers
- OSAC responsibility includes PP&C and Risk Integration
- PAIO is the PP&C / Schedule Risk process owner
- •PP&A owns schedule, EVM, related risk assessment, integration processes

From Wikipedia, the free encyclopedia

Cost & Schedule Relationships

TECHNICAL REQUIREMENTS

COST DRIVERS

SCHEDULE DRIVERS

Quantitative Cost/Schedule Risk Assessment (C/SRA)

Why do it?

- To determine the probability of finishing on or before a given point in time for a given cost
- To determine the time and cost requirements for required "confidence levels" *NASA policy*
- Because history keeps repeating itself...

NASA's Cost and Schedule Track Record

Study	Cost/Budg	et Growth	Percent of Projects Which Experienced Growth	
	Average	Median		
NASA in the 90s	36%	26%	78%	
NASA in the 70s	43%	26%	75%	
NASA in the 80s				
Gruhl Study	61%	50%	95%	
GAO Study	83%	60%	89%	
DoD RDT&E	45%	27%	76%	

Source: Hamaker & Schaffer 2004 Study

Note: Cost growth data are drawn from budget data and are based on growth from ATP to launch

- Current projects have exceeded their Phase B estimated launch dates by an average of about 56 percent respective cost estimate by 64 percent (Based on recent comparison of DoD to NASA performance)
- Cost and schedule growth
 - Adversely effects other projects in the portfolio
 - Damages our reputation and credibility with our Congressional stakeholders and therefore hampers our ability to obtain requested funds

Risk Assessment – Basic Process Flow Diagram

Risk Assessment Data Collection Methods

- Data Interview Evaluate data points independently by reviewing data and interviewing personnel, then enter each data point discretely (most accurate method)
- Analogy/Historical Collect and evaluate data for the subject project or similar projects (accurate but subject to variation based on applicability)
- <u>Grouping</u> Assign risk parameters to data points that share common characteristics (not as accurate, but acceptable)
- Blanketing Assign risk parameters with a parametric across the entire project (not very accurate, can be difficult to validate or defend)
- Heuristic Make your best educated "guess" (very questionable basis or validity)

Risk Assessment Data Collection Methods

- Data Interview
 - Individual Interviews (one on one)
 - Delphi Technique
 - Group Discussions
- Analogy/Historical
 - Data review (past similar)
 - Regression Analysis (current or past)

Risk Assessment Data Collection Methods

- Grouping
 - > WBS
 - > RBS
 - Risk Register
 - Duration

- Project Type
- Weight, Volume, Power, Thrust
- > Time and/or Cost
- > <u>Heuristic</u>
 - Analyst or Technical Expert Judgment

From a recent Agency briefing...

Different Cost Estimating Methods

Transparent ovals added to show correlation to previous slide...

Be aware...

Summarization of detail results in larger ranges of output values

Source: Jimmy Black study, August 2004

			Original	50%	80%	100%	Slipage %	Slipage %	Slipage %
	Case	# Samples	Finish Date	Probability	Probability	Probability	50% Prob	80% Prob	100% Prob
0	100 Act 1 Day Dur	1000	01/07/2005	02/08/2005	02/10/2005	02/17/2005	32.00%	34.00%	41.00%
	10 Act 10 Day Dur	1000	01/07/2005	02/08/2005	02/16/2005	03/10/2005	32.00%	40.00%	62.00%
700	1 Act 100 Day Dur	1000	01/07/2005	02/03/2005	03/07/2005	04/26/2005	27.00%	59.00%	109.00%
	100 Act 1 Day Dur	10000	01/07/2005	02/08/2005	02/10/2005	02/18/2005	32.00%	34.00%	42.00%
	10 Act 10 Day Dur	10000	01/07/2005	02/08/2005	02/16/2005	03/28/2005	32.00%	40.00%	80.00%
	1 Act 100 Day Dur	10000	01/07/2005	02/03/2005	03/08/2005	04/29/2005	27.00%	60.00%	112.00%

Be aware...

With all other data values equal, the PDC affects output values

Source: Greg Smith study, August 2004

PDC	20%	80%	Range (1)	Density (2)	Rank (3)
Beta	2/24/03	3/4/03	8	0.42	1
Triangular	3/17/03	4/1/03	15	0.79	2
Normal	4/8/03	4/18/03	10	0.53	3
Uniform	4/4/03	4/23/03	19	1.00	4

- (1) absolute difference between the 20% and 80% dates
- (2) PDC range divided by Uniform PDC Range
- (3) determined by optimism of 20% to 80% results

How do I pick the best PDC?

- How many identified risks and opportunities impact this event?
- What are the magnitude of the possible impacts?
- Are mitigation plans in place?
- Do we have control over any of these impacts?
- Are the risks and opportunities well defined?
- How confident am I in my data points?

Common Probability Distribution Curves (PDC)

Normal (bell shaped)

Always symmetrical

Triangular (pyramid shaped)

Can be symmetrical or asymmetrical

Beta (skinny bell shaped)

Can be symmetrical or asymmetrical

Schedule Risk Assessment Results Analysis

Date: 07/25/2002 9:58:36 AM

Samples: 500 Unique ID: 0

Name:

Initial Analysis (Duration -5% to +40%)

Completion Std Deviation: 22.09 d 95% Confidence Interval: 1.94 d

Each bar represents 10 d

Completion Probability Table

<u>Prob</u>	<u>Date</u>	<u>Prob</u>	<u>Date</u>
0.05	Mon 07/19/04	0.55	Fri 09/03/04
0.10	Mon 07/26/04	0.60	Wed 09/08/04
0.15	Fri 07/30/04	0.65	Tue 09/14/04
0.20	Thu 08/05/04	0.70	Fri 09/17/04
0.25	Wed 08/11/04	0.75	Fri 09/24/04
0.30	Tue 08/17/04	0.80	Wed 09/29/04
0.35	Thu 08/19/04	0.85	Wed 10/06/04
0.40	Tue 08/24/04	0.90	Thu 10/14/04
0.45	Fri 08/27/04	0.95	Wed 10/27/04
0.50	Tue 08/31/04	1.00	Mon 12/13/04

Scheduled Completion - 8/22/04

Cost Risk Assessment Results Analysis

Date: 11/10/2003 2:47:22 PM

Samples: 1000 Unique ID: 1

Name:

11th run - revised CS FTE and other costs

Cost Standard Deviation: \$37,342.91 95% Confidence Interval: \$2,314.54 Each bar represents \$25,000.00

Cost Probability Table

<u>Prob</u>	<u>Cost</u>	<u>Prob</u>	<u>Cost</u>
0.05	\$4,961,993.77	0.55	\$5,018,696.98
0.10	\$4,971,284.06	0.60	\$5,024,439.88
0.15	\$4,978,578.14	0.65	\$5,030,154.81
0.20	\$4,984,960.83	0.70	\$5,037,085.72
0.25	\$4,989,130.03	0.75	\$5,043,163.95
0.30	\$4,995,243.23	0.80	\$5,049,927.99
0.35	\$4,999,294.36	0.85	\$5,057,663.15
0.40	\$5,003,588.40	0.90	\$5,067,874.77
0.45	\$5,008,437.29	0.95	\$5,079,801.44
0.50	\$5,013,328.90	1.00	\$5,143,719.49

Budget - \$4.9 M

Risk Critical Analysis

- Indicates whether or not a task is "risk critical" (i.e. during calculations, whether or not it becomes a Critical Path task)
 - Critical Path the string of tasks that dictates the completion date
 - May not always be technically "critical"
- If a task becomes critical, the tool indicates percentage of time the task is critical during simulation

Sensitivity Analysis

- Indicates the potential impact an activity has on the overall project or program completion
 - Intersection of red and green indicates current schedule project completion
 - Red is threat potential
 - ➤ Green is opportunity potential

	Task Name	Rept ID	Min Rdur	ML Rdur	Max Rdur	Feb 02, '03
3	Prelimary Design	1	22.5d	30d	37.5d	1 3 3 M 1 VV 1 1 3 3 M 1 VV 1 1 3 3 M 1 VV 1
4	Design Unit C	0	22.5d	30d	37.5d	
14	Prelimary Design	0	26.6d	28d	39.2d	
15	Design Unit B1	0	18.75d	25d	31.25d	
22	Design Unit B2	0	23.75d	25d	35d	
7	Design Unit A1	0	15d	20d	25d	
26	Fabricate Unit C	0	15d	20d	25d	
18	Design Unit A2	0	17.1d	18d	25.2d	
12	Test Unit B1	0	11.25d	15d	18.75d	

How To Use The Results

- Gain an understanding of the probability of completing by a certain date & cost
 - Use to establish contingency or reserve
 - Monitor the contingency as it gets used
- Understand where the risk areas are so they can be monitored and proactively managed
 - Sensitivity Analysis
 - Risk Critical Analysis

